Reactive Species Involved in the Regioselective Photooxidation of Heptamethine Cyanines.
نویسندگان
چکیده
Heptamethine cyanines are important near-IR fluorophores used in many fluorescence applications. Despite this utility, these molecules are susceptible to light-promoted reactions (photobleaching) involving photochemically generated reactive oxygen species (ROS). Here, we have sought to define key chemical aspects of this nearly inescapable process. Near-IR photolysis of a model heptamethine cyanine leads to the regioselective oxidative cleavage of the cyanine polyene. We report the first quantitative analysis of the major reaction pathway following either photolysis or exposure to candidate ROS. These studies clearly indicate that only singlet oxygen (1O2), and not other feasible ROS, recapitulates the direct photolysis pathway. Computational studies were employed to investigate the regioselectivity of the oxidative cleavage process, and the theoretical ratio is comparable to observed experimental values. These results provide a more complete picture of heptamethine cyanine photooxidation, and provide insight for design of improved compounds for future applications.
منابع مشابه
A simple and effective "capping" approach to readily tune the fluorescence of near-infrared cyanines.
Heptamethine cyanines are favorable for fluorescence imaging applications in biological systems owing to their near-infrared (NIR) absorption and emission. However, it is very difficult to quench the fluorescence of NIR dyes by the classic photoinduced electron transfer mechanism due to their relatively high-lying occupied molecular orbital energy levels. Herein, we present a simple and effecti...
متن کاملSynthesis and Optical Properties of Near-Infrared meso-Phenyl-Substituted Symmetric Heptamethine Cyanine Dyes.
Heptamethine cyanine dyes are a class of near infrared fluorescence (NIRF) probes of great interest in bioanalytical and imaging applications due to their modifiability, allowing them to be tailored for particular applications. Generally, modifications at the meso-position of these dyes are achieved through Suzuki-Miyaura C-C coupling and SRN1 nucleophilic substitution of the chlorine atom at t...
متن کاملSynthesis and spectral properties of near-infrared aminophenyl-, hydroxyphenyl-, and phenyl-substituted heptamethine cyanines.
Diverse meso-aminophenyl-, hydroxyphenyl-, and phenyl-substituted heptamethine cyanine dyes were prepared by a modified Suzuki--Miyaura method in good yields. In addition, direct Suzuki coupling of Vilsmeier--Haack reagent extends the procedure to the synthesis of otherwise difficult cyanine dyes containing multiple heteroatoms in the indolium ring. The new compounds possess excellent spectral ...
متن کاملElectrophile-Integrating Smiles Rearrangement Provides Previously Inaccessible C4′-O-Alkyl Heptamethine Cyanine Fluorophores
New synthetic methods to rapidly access useful fluorophores are needed to advance modern molecular imaging techniques. A new variant of the classical Smiles rearrangement is reported that enables the efficient synthesis of previously inaccessible C4'-O-alkyl heptamethine cyanines. The key reaction involves N- to O-transposition with selective electrophile incorporation on nitrogen. A representa...
متن کاملNovel Near-Infrared Cyanine Dyes for Fluorescence Imaging in Biological Systems
Heptamethine cyanine dyes are attractive compounds for imaging purposes in biomedical applications because of their chemical and photophysical properties exhibited in the nearinfrared region. A series of meso amino-substituted heptamethine cyanine dyes with indolenine, benz[e]indolenine and benz[c,d]indolenine heterocyclic moieties were synthesized and their spectral properties including fluore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2015